ПЕРХЛОРАТЫ, соед., содержащие тетраэдрич. группировку ClO4. Условно различают ионные, ковалентные и координационные П. В ионных П.-солях HClO4-группаhttps://www.pora.ru/image/encyclopedia/7/1/8/10718.jpeg отрицательно заряжена (заряд —1). К ним относятся П. щелочных и щел.-зем. металлов, а также мол. катионов типа https://www.pora.ru/image/encyclopedia/7/1/9/10719.jpeg, https://www.pora.ru/image/encyclopedia/7/2/0/10720.jpeg, [M(H2O)n]+ и др. В ковалентных П. группа ClO4 связана с остальной частью молекулы ковалентной связью через атом кислорода (R—О—ClO3), она имеет структуру тригональной пирамиды, ее заряд меньше 1 (по абс. величине). К ковалентным П. относятся хлорная к-та, ее ангидрид Cl2O7 и эфиры, П. галогенов. В большинстве П. переходных и непереходных металлов (кроме щелочных и щел.-зем.) группа ClO4 связана с атомом металла частично ковалентной координац. связью через один, два или три атома О, будучи соотв. моно-, би- и тридентатным лиган-дом. Характерное св-во таких П.-способность образовывать координационные П. анионного типа https://www.pora.ru/image/encyclopedia/7/2/1/10721.jpeg , где n= 2 — 8. Границы между группами П. нестрогие; напр., П. бора, Si, I, большинства металлов (кроме щелочных и щел.-зем.) можно отнести и к ковалентным и к координационным, а П. серебра, Pb, Sc и РЗЭ - и к координационным, и к ионным.

Сродство к электрону радикала ClO4 очень высокое (5,82 эВ). Радиус иона https://www.pora.ru/image/encyclopedia/7/2/2/10722.jpeg 0,236 нм, https://www.pora.ru/image/encyclopedia/7/2/3/10723.jpeg в газе -355,6 кДж/моль, а в разб. водном р-ре —129,16 кДж/моль. Распад всех П. экзотермичен.

Хлорная кислота H—О—ClO3-бесцв. летучая жидкость, сильно дымящая на воздухе, в парах мономерна; длины связей Cl—ОН 0,1635 нм, Cl=O 0,1408 нм, О—H 0,098 нм, углы OClO 112,8°, HOClO 106,2°. Т.пл. -101 0C, т.кип. 106 0C (с разл.); плотн. 1,7608 г/см3; ур-ние температурной зависимости давления пара lg p (мм рт. ст.) = 8,175 — 2007/T, https://www.pora.ru/image/encyclopedia/7/2/4/10724.jpeg 120,5 Дж/(моль·К); https://www.pora.ru/image/encyclopedia/7/2/5/10725.jpeg : -40,4 кДж/моль,https://www.pora.ru/image/encyclopedia/7/2/6/10726.jpeg -78,5 кДж/моль; https://www.pora.ru/image/encyclopedia/7/2/7/10727.jpeg 188,4 Дж/(моль·К); r 1,351·102 Ом·см; e 118 (298 К); h 0,795·10-3 Па·с. Жидкая HClO4 частично димеризована, для нее характерна равновесная автодегидратация:

https://www.pora.ru/image/encyclopedia/7/2/8/10728.jpeg

При 25 0C константа равновесия К https://www.pora.ru/image/encyclopedia/7/2/9/10729.jpeg0,7·10-6. Если пары HClO4 сконденсировать ниже 0 0C, равновесие устанавливается в течение неск. часов. Присутствие небольшой равновесной концентрации Cl2O7 (~0,16 M) определяет низкую термич. стабильность жидкой HClO4; в парах, где равновесие полностью сдвинуто влево, распад идет при 200-350 0C, в жидкой фазе-при 57-77 0C. Пар над 100%-ной HClO4 содержит 11 мол. % Cl2O7 и 89% HClO4. Продукты термич. разложения хлорной к-ты-O2, Cl2, ClO2, Cl2O6, HClO4https://www.pora.ru/image/encyclopedia/7/3/0/10730.jpeg2H2O.

В присут. ингибиторов (CCl3COOH, C2HCl5, CHCl3 и др.) и при разбавлении водой термич. стабильность жидкой HClO4 повышается. Распад HClO4 в парах катализируют оксиды переходных металлов (CuO, Fe2O3, Cr2O3 и др.).

Хлорная к-та хорошо раств. в CF3COOH, CHCl3, CH2Cl2 и др. хлорир. углеводородах, однако совмещение ее с р-рите-лями, способными окисляться, как правило, приводит к воспламенению и взрыву. В безводной HClO4 раств. ионные П.; при 0 0C р-римость (г в 100 г HClO4): KClO4 4,3, RbClO4 22,6, CsClO4 68,4. П. цезия, Rb, https://www.pora.ru/image/encyclopedia/7/3/1/10731.jpeg и др. крупных катионов кристаллизуются из HClO4 в виде нестабильных комплексов M[H(ClO4)2], легко теряющих молекулу HClO4 в вакууме.

Известны восемь гидратов HClO4 (табл. 1). Моногидрат https://www.pora.ru/image/encyclopedia/7/3/2/10732.jpeg -ионный П.; https://www.pora.ru/image/encyclopedia/7/3/3/10733.jpeg 382,0 кДж/моль; в кристал-лич. структуре остальных гидратов присутствуют гидратир. протоны https://www.pora.ru/image/encyclopedia/7/3/4/10734.jpeg, https://www.pora.ru/image/encyclopedia/7/3/5/10735.jpeg , https://www.pora.ru/image/encyclopedia/7/3/6/10736.jpeg ; входящие в состав кристаллогидратов молекулы воды связаны с ионами https://www.pora.ru/image/encyclopedia/7/3/7/10737.jpeg водородными связями. При -25 0C моногидрат переходит в моноклинную модификацию (пространств. группа Р21/п). Азеотроп с водой имеет т. кип 203 0C (0,1 МПа) и содержит 72,4% HClO4, пар над р-рами выше этой концентрации обогащен HClO4, ниже-водой.

Хлорная к-та-одна из сильнейших неорг. к-т, в ее среде соед. даже явно кислотного характера ведут себя как основания, присоединяя протон и образуя катионы ацилпер-хлоратов, напр. https://www.pora.ru/image/encyclopedia/7/3/8/10738.jpeg , https://www.pora.ru/image/encyclopedia/7/3/9/10739.jpeg, https://www.pora.ru/image/encyclopedia/7/4/0/10740.jpeg. В безводной HClO4, а также в р-рах щелочных П. и Cl2O7 в HClO4 возможен синтез П. большинства металлов в несоль-ватир. состоянии.

Конц. HClO4-сильнейший окислитель, контакт ее с большинством орг. материалов приводит к воспламенению и взрыву. Окислит. активность к-ты с концентрацией менее 72% значительно ниже, а термич. устойчивость - выше, чем у 95-100%-ной HClO4.

Водные р-ры HClO4 получают анодным окислением р-ра соляной к-ты или Cl2, р-р, близкий по составу к дигидра-ту, - ректификацией более разб. р-ров, 100%-ную HClO4-отгонкой из смеси HClO4·2H2O с олеумом. Водные р-ры HClO4 применяют в аналит. химии для растворения металлов, "влажного сожжения" орг. в-в и как стандарт в ациди-метрии; как компонент полировальных ванн для металлов.

Ионные П. П. щелочных и щел.-зем. металлов -бесцв. кристаллы (табл. 2). П. всех щелочных металлов, кроме Li, диморфны; при обычных условиях устойчива ромбич. модификация, при высоких т-рах - кубическая. Перхлорат Sr также диморфен, перхлораты Ca и Ba имеют по три модификации. Все П., кроме солей К, Rb и Cs, гигроскопичны и образуют гидраты, напр. Са(СlО4)2·4H2O (т.пл. 75,6 0C), Sr(ClO4)2·H2O (т.пл. 155 0C).

Табл. 1.- НЕКОТОРЫЕ СВОЙСТВА HClO4 ·nН2О

n

Сингония

Пространств. группа

Т.пл., 0C

0.25



-73,0*

1

Ромбич.

Pnma

49,90

2

Ромбич.

Pnma

-20,6

2,5

Моноклинная

P21/c

-32,1

3

Ромбич.

Pbca

-40,20

3,5

Ромбич.

Pbca

-45,60

4



-57,7*

5,5

Кубич.


-50,4

* Инконгруэнтно.

Табл. 2.-СВОЙСТВА ПЕРХЛОРАТОВ ЩЕЛОЧНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Перхлорат


Пространств. группа низкотемпературной модификации

Т-ра поли-морфного перехода, 0C

Т.пл., 0C

Т-ра начала быстрого разложения, 0C

Плотн., г/см3

https://www.pora.ru/image/encyclopedia/7/4/1/10741.jpeg

Дж/(моль·К)

https://www.pora.ru/image/encyclopedia/7/4/2/10742.jpeg

кДж/моль

https://www.pora.ru/image/encyclopedia/7/4/3/10743.jpeg

кДж/моль

Р-римость в воде при 25 0C, г в 100 г

LiClO4



247,6

438

2,432

104,7

-380,87

-252,3

37,38

NaClO4

Cmcm

306,1

469*

525

2,495

110,3

-384,42

-255,5

67,70

KClO4

Pnma

298,0

580*

580

2,536

108,0

-432,42

-303,5

2,02

RbClO4

Pnma

281,1

597*

597

3,035

109,4

-436,73

-306,5

1,32

CsClO1

Pnma

221,8

577*

577

3,319

110,4

-442,62

-310,6

1,93

Ca(ClOJ2


340,8 410


477

2,651

185,3

-735,76

-412,3

65,35

Sr(ClO4)2


288


472

2,947

187,8

-768,48

-514,8

75,59

Ba(ClO4)2


284 350


477

3,574

185,8

-785,29

-526,0

66,48

* С разложением.

Табл. 3.-СВОЙСТВА ОНИЕВЫХ ПЕРХЛОРАТОВ

Перхлорат

Сингония

Пространств. группа

Т.пл., 0C

Т-ра медленного разложения,

Плотн., г/см3

https://www.pora.ru/image/encyclopedia/7/4/4/10744.jpeg

кДж/моль

N2H5ClO4

Моноклинная

C2/c

142

140-190

1,939

-173,8

NH3OHClO4

Ромбич.

P21сn

89

110-150

2,065

-281,6

C(NH2)3ClO4

Тригон.

R3

248

275-400

1,743

-311,7

C(NH2)2NHNO2ClO4



Разлага-ется

100-120

1,932

-211,5

NOClO4

Ромбич.

Рпта

То же

100-140

2,169

52,3

NO2ClO4

Моноклинная

C2/c

— " —

100-150

2,220

39,0

(CH3)2N (NH2)2ClO4



— " —

120-140

1,56

-69,7

Ионные П. почти количественно разлагаются при нагревании до хлорида металла и O2 с промежут. образованием хлората. В присут. SiO2 и др. термически устойчивых кислотных оксидов в продуктах распада появляется Cl2. Оксиды переходных металлов, особенно Ni, Со и Mn, снижают т-ру разложения П. Еще более понижают т-ру разложения ионных П. оксиды или пероксиды щелочных металлов. П. хорошо раств. в воде и полярных орг. и неорг. р-рите-лях-спиртах, ацетоне, гидразине, H2O2- и образуют с ними сольваты. Конц. р-ры П. в окисляемых жидкостях взрывоопасны. В жидком состоянии П. щелочных и щел.-зем. металлов неограниченно раств. друг в друге, образуя эвтектики; т-ры плавления эвтектик: 205 0C NaClO4—LiClO4 (71,5 мол. %); 207 0C KClO4—LiClO4 (76,0%); 234 0C Ca(ClO4)2— LiClO4 (76,9%); 293 0C Ca(ClO4)2—NaClO4 (44,9%).

Ион https://www.pora.ru/image/encyclopedia/7/4/5/10745.jpeg устойчив к действию большинства восстановителей в водном р-ре, количественно восстанавливается до https://www.pora.ru/image/encyclopedia/7/4/6/10746.jpeg только под действием солей Ti(III), Mo(III) и V(III) в кислой среде. П. металлов II гр. и нек-рые другие выше 200 0C реагируют с пероксидами и супероксидами щелочных металлов:

https://www.pora.ru/image/encyclopedia/7/4/7/10747.jpeg

Р-ция может протекать в режиме самораспространения.

П. получают анодным окислением хлоратов или хлоридов металлов в водном р-ре или р-цией водной HClO4 с карбонатом или оксидом соответствующего металла. П. легких щелочных и щел.-зем. металлов отличаются высоким содержанием кислорода: LiClO4-60,15%, NaClO4-52,27%, КСlO4-46,19%, Ca(ClO4)2-53,35%. Объемное содержание кислорода в П. соизмеримо с его содержанием в жидком и твердом кислороде. На этом основано применение П. в качестве высокоемких твердых кислородоносителей в хим. источниках кислорода (см. Пиротехнические источники газов), в смесевых BB и в пиротехн. составах.

ОниевыеП. https://www.pora.ru/image/encyclopedia/7/4/8/10748.jpeg . Хлорная к-та способна присоединяться к любым орг. и неорг. соед., имеющим сродство к протону, с образованием ониевых катионов: R + HClO4 https://www.pora.ru/image/encyclopedia/7/4/9/10749.jpeg . Известно неск. сотен таких соед., наиб. изучены П., где RH+-NH