НИТРОКСИЛЬНЫЕ РАДИКАЛЫ (аминилоксидные, ими-ноксильные, аминоксильные, азотокисные радикалы), содержат нитроксильную группу https://www.pora.ru/image/encyclopedia/1/8/1/9181.jpeg Наиб. изучены органические Н.р. общей ф-лы RR'NO., где R, R'-opr. остаток. Известны также неорганические Н.р., напр. соль Фреми (NaOSO2)2NO.. В зависимости от числа нитроксильных групп различают моно-, би-, ..., полирадикалы.

Называют Н.р., добавляя к систематич. назв. соед. окончание "оксил". Напр., соед. ф-лы I (везде черточками обозначены группы СH3)-2,2,6,6-тетраметилпиперидин-1-оксил. Используют также др. способ наименования-добавляют окончание "нитроксил" к назв. заместителей R и R', напр. (трет-С4Н9)2NO.-ди-тpет-бутилнитроксил, (С6Н5)2NO.-дифенилнитроксил.

Нитроксильная группа содержит трехэлектронную связь N—О; ее строение м.б. изобpажено резонансными ф-лами:

https://www.pora.ru/image/encyclopedia/1/8/2/9182.jpeg

Неспаренный электрон находится на разрыхляющей p*-орбитали, образованной из 2pz-орбиталей атомов N и О. Гибридизация связей атома N близка к sp2. В ди-тpет-алкилнитроксилах неспаренный электрон почти полностью локализован на группе N—О, причем спиновые плотности r на атомах N и О приблизительно равны. Замена алкильного заместителя на ароматический значительно понижает rN, в то время как rO изменяется мало. Длина связи N—О в Н.р. 0,123-0,13 нм.

https://www.pora.ru/image/encyclopedia/1/8/3/9183.jpeg

Большое кол-во Н.р. выделено в индивидуальном состоянии. Для них характерно наличие стерич. затруднений вблизи радикального центра-гл. обр. третичных атомов С, обрамляющих нитроксильную группу. Стабильные Н.р.-полярные (для соед. I m 10,6.10-30 Кл.м) окрашенные твердые в-ва или жидкости, лишь бис-(трифторметил) нитроксил (CF3)2NO. -газ при нормальных условиях. Примеры стабильных Н.р.-соед. I-VIII.

https://www.pora.ru/image/encyclopedia/1/8/4/9184.jpeg

Нек-рые Н.р. (напр., соль Фреми) в твердом состоянии-диамагн. димеры.

В ИК спектрах нитроксилов колебания группы NO проявляются в области 1340-1370 см-1. Для масс-спектров, как правило, характерно наличие интенсивного пика мол. иона М+. Интенсивность пиков ионов [М+1]+ превышает интенсивность пика изотопного иона. В спектрах ЭПР Н.р. проявляется триплетное расщепление, обусловленное сверхтонким взаимод. (СТВ) неспаренного электрона с ядром атома 14N. Константа СТВ aN зависит от строения радикала и характеризуется след. значениями (мТ):

https://www.pora.ru/image/encyclopedia/1/8/5/9185.jpeg

* Квинтетное расщепление.

g-Фактор большинства Н.р. составляет 2,005-2,006.

Стабильность Н.р. определяется степенью делокализации неспаренного электрона по связям заместителей и стерич. затруднениями вблизи атомов с высокой спиновой плотностью. Мн. ди-трет-алкилнитроксилы хранятся годами без разложения. Диалкилнитроксилы, имеющие a-Н-атомы, быстро диспропорционируют:

https://www.pora.ru/image/encyclopedia/1/8/6/9186.jpeg

Разложение диарил- и алкиларилнитроксилов обычно включает стадию бимол. атаки нитроксильной группой по орто-или nара-положению, напр.:

https://www.pora.ru/image/encyclopedia/1/8/7/9187.jpeg

Потенциал окисления стабильных Н.р. довольно высок; они окисляются в оксоаммониевые соли только такими сильными окислителями, как Сl2, SbCl5, SnCl4, напр.:

https://www.pora.ru/image/encyclopedia/1/8/8/9188.jpeg

Н.р.-очень слабые основания, напр.: для соед. I рКа —5,5. В кислых средах они находятся в равновесии с катион-радикалами https://www.pora.ru/image/encyclopedia/1/8/9/9189.jpeg и продуктами их одноэлектронного диспропорционирования:

https://www.pora.ru/image/encyclopedia/1/9/0/9190.jpeg

К-ты Льюиса, напр. АlСl3, образуют с Н.р. парамагн. комплексы донорно-акцепторного типа.

Восстановление Н.р. приводит к зависимости от природы восстановителя к соответствующим гидроксиламинам RR'NOH или аминам RR'NH. Щелочные металлы реагируют с Н.р. лишь при повыш. т-ре. Взаимод. с металлоорг. соед. протекает легко, напр.:

https://www.pora.ru/image/encyclopedia/1/9/1/9191.jpeg

При повыш. т-ре Н.р. реагируют с углеводородами по схеме:

https://www.pora.ru/image/encyclopedia/1/9/2/9192.jpeg

На способности стабильных Н.р. взаимодействовать с активными алкильными (но не пероксильными) радикалами основано их ингибирующее действие на цепные радикальные процессы.

На примере стабильных Н.р. были обнаружены т.наз. р-ции без затрагивания своб. валентности, напр.:

https://www.pora.ru/image/encyclopedia/1/9/3/9193.jpeg

С помощью подобных р-ций было синтезировано большое число Н.р. На их использовании основан метод спиновых меток (см. Спинового зонда метод).

Др. важные методы получения Н.р. включают окисление (окислители PbO2, Ag2O, MnO2 и др.) N,N-диза-мещенных гидроксиламина; окисление вторичных и третичных аминов (чаще всего используют Н2О2 в присут. вольфрамата Na); восстановление нитросоед., напр.: https://www.pora.ru/image/encyclopedia/1/9/4/9194.jpeg ; присоединение активных радикалов к нитрозосоед. и нитронам, напр.:

Последнюю р-цию применяют в спиновых ловушек методе.

https://www.pora.ru/image/encyclopedia/1/9/5/9195.jpeg

Н. р. используют в научных исследованиях для изучения механизмов хим. р-ций, как спиновые метки и зонды, парамагн. модели в биофизике и медицине, стабилизаторы полимеров и др.

Лит.: Бучаченко А.Л., Вассерман A.M., Стабильные радикалы, М., 1973; Розанцев Э. Г., Шолле В. Д., Органическая химия свободных радикалов, М., 1979; Нитроксильные радикалы. Синтез, химия, приложения, М., 1987; Имидазо-линовые нитроксильные радикалы, Новосиб., 1988. В. Д. Шолле.