ВОЛЬТАМПЕРОМЕТРИЯ, совокупность электрохим. методов исследования и анализа, основанных на изучении зависимости силы тока в электролитич. ячейке от потенциала погруженного в анализируемый р-р индикаторного микроэлектрода, на к-ром реагирует исследуемое электрохимически активное (электроактивное) в-во. В ячейку помещают помимо индикаторного вспомогат. электрод со значительно большей пов-стью, чтобы при прохождении тока его потенциал практически не менялся (неполяризующийся электрод). Разность потенциалов индикаторного и вспомогат. электродов Е описывается ур-нием Е = U — IR, где U - поляризующее напряжение, R-сопротивление р-ра. В анализируемый р-р вводят в большой концентрации индифферентный электролит (фон), чтобы, во-первых, уменьшить величину R и, во-вторых, исключить миграционный ток, вызываемый действием электрич. поля на электроактивные в-ва (устар. - деполяризаторы). При низких концентрациях этих в-в омическое падение напряжения IR в р-ре очень мало. Для полной компенсации омического падения напряжения применяют потенциостатирование и трехэлектродные ячейки, содержащие дополнительно электрод сравнения. В этих условияхhttps://www.pora.ru/image/encyclopedia/5/1/0/4510.jpeg

В кач-ве индикаторных микроэлектродов используют стационарные и вращающиеся - из металла (ртуть, серебро, золото, платина), углеродных материалов (напр., графит), а также капающие электроды (из ртути, амальгам, галлия). Последние представляют собой капилляры, из к-рых по каплям вытекает жидкий металл. В. с использованием капающих электродов, потенциал к-рых меняется медленно и линейно, наз. полярографией (метод предложен Я. Гейровским в 1922). Электродами сравнения служат обычно электроды второго рода, напр. каломельный или хлоросеребряный (см. Электроды сравнения). Кривые зависимости I =f(E) или I =f(U) (вольтамперограммы) регистрируют спец. приборами - полярографами разных конструкций.

Вольтамперограммы, полученные с помощью вращающегося или капающего электрода при монотонном изменении (линейной развертке) напряжения, имеют вид, схематически представленный на рисунке. Участок увеличения тока наз. волной. Волны м. б. анодными, если электроактивное в-во окисляется, или катодными, если оно восстанавливается. Когда в р-ре присутствуют окисленная (Ох) и восстановленная (Red) формы в-ва, достаточно быстро (обратимо) реагирующие на микроэлектроде, на вольтамперограмме наблюдается непрерывная катодно-анодная волна, пересекающая ось абсцисс при потенциале, соответствующем окислит.-восстановит. потенциалу системы Ox/Red в данной среде. Если электрохим. р-ция на микроэлектроде медленная (необратимая), на вольтамперограмме наблюдаются анодная волна окисления восстановленной формы в-ва и катодная волна восстановления окисленной формы (при более отрицат. потенциале). Образование площадки предельного тока на вольтамперограмме связано либо с ограниченной скоростью массопереноса электроактивного в-ва к пов-сти электрода путем конвективной диффузии (предельный диффузионный ток, Id), либо с ограниченной скоростью образования электроактивного в-ва из определяемого компонента в р-ре. Такой ток наз. предельным кинетическим, а его сила пропорциональна концентрации этого компонента.

Форма волны для обратимой электрохим. р-ции описывается ур-нием:
https://www.pora.ru/image/encyclopedia/5/1/1/4511.jpeg

где R-газовая постоянная, Т-абс. т-ра, E1/2-потенциал полуволны, т.е. потенциал, соответствующий половине высоты волны (Id/2; см. рис.). Значение E1/2 характерно для данного электроактивного в-ва и используется для его идентификации. Когда электрохим. р-ции предшествует адсорбция определяемого в-ва на пов-сти электрода, на вольтамперограммах наблюдаются не волны, а пики, что связано с экстремальной зависимостью адсорбции от потенциала электрода. На вольтамперограммах, зарегистрированных при линейном изменении (развертке) потенциала со стационарным электродом или на одной капле капающего электрода (устар. - осциллографич. полярограмме), также наблюдаются пики, нисходящая ветвь к-рых определяется обеднением приэлектродного слоя р-ра электроактивным в-вом. Высота пика при этом пропорциональна концентрации электроактивного в-ва. В полярографии предельный диффузионный ток (в мкА), усредненный по времени жизни капли, описывается ур-нием Ильковича:
https://www.pora.ru/image/encyclopedia/5/1/2/4512.jpeg

где n-число электронов, участвующих в электрохим. р-ции, С-концентрация электроактивного в-ва (мМ), D-eгo коэф. диффузии (см2/с),https://www.pora.ru/image/encyclopedia/5/1/3/4513.jpegвремя жизни ртутной капли (с), m-скорость вытекания ртути (мг/с).
https://www.pora.ru/image/encyclopedia/5/1/4/4514.jpeg

Вольтамперограмма, получаемая с помощью вращающегося дискового электрода.

В В. с вращающимся дисковым электродом предельный диффузионный ток рассчитывают по ур-нию:

https://www.pora.ru/image/encyclopedia/5/1/5/4515.jpeg

где S-площадь пов-сти электрода (см2),https://www.pora.ru/image/encyclopedia/5/1/6/4516.jpeg-круговая частота вращения электрода (рад/с), v-кинематич. вязкость р-ра (см2/с), F-число Фарадея (Кл/моль).

Циклич. В. (В. с относительно быстрой треугольной разверткой потенциала) позволяет изучать кинетику и механизм электродных процессов путем наблюдения на экране осциллографич. трубки с послесвечением одновременно вольтамперограмм с анодной и катодной разверткой потенциала, отражающих, в частности, и электрохим. р-ции продуктов электролиза.

Ниж. граница определяемых концентраций Сн в методах В. с линейной разверткой потенциала составляет 10-5-10-6 М. Для ее снижения до 10-7-10-8 М используют усовершенствованные инструментальные варианты - переменно-токовую и дифференциальную импульсную В.

В первом из этих вариантов на постоянную составляющую напряжения поляризации налагают переменную составляющую небольшой амплитуды синусоидальной, прямоугольной (квадратноволновая В.), трапециевидной или треугольной формы с частотой обычно в интервале 20-225 Гц. Во втором варианте на постоянную составляющую напряжения поляризации налагают импульсы напряжения одинаковой величины (2-100 мВ) длительностью 4-80 мс с частотой, равной частоте капания ртутного капающего электрода, или с частотой 0,3-1,0 Гц при использовании стационарных электродов. В обоих вариантах регистрируют зависимость от U или Е переменной составляющей тока с фазовой или временной селекцией. Вольтамперограммы при этом имеют вид первой производной обычной вольтамперометрич. волны. Высота пика на них пропорциональна концентрации электроактивного в-ва, а потенциал пика служит для идентификации этого в-ва по справочным данным.

Пики разл. электроактивных в-в, как правило, лучше разрешаются, чем соответствующие вольтамперометрич. волны, причем высота пика в случае необратимой электрохим. р-ции в 5-20 раз меньше высоты пика в случае обратимой р-ции, что также обусловливает повыш. разрешающую способность этих вариантов В. Напр., необратимо восстанавливающийся кислород практически не мешает определению мн. электроактивных в-в методом переменно-токовой В. Пики на переменно-токовых вольтамперограммах отражают не только электрохим. р-ции электроактивных в-в, но и процессы адсорбции - десорбции неэлектроактивных в-в на пов-сти электрода (пики нефарадеевского адмиттанса, устар. - тенсамметрич. пики).

Для всех вариантов В. используют способ снижения Сн, основанный на предварительном электрохим., адсорбц. или хим. накоплении определяемого компонента р-ра на пов-сти или в объеме стационарного микроэлектрода, с последующей регистрацией вольтамперограммы, отражающей электрохим. р-цию продукта накопления. Эту разновидность В. наз. инверсионной (устар. название инверсионной В. с накоплением на стационарном ртутном микроэлектроде - амальгамная полярография с накоплением). В инверсионной В. с предварит. накоплением Сн достигает 10-9-10-11 М. Миним. значения Сн получают, используя тонкопленочные ртутные индикаторные электроды, в т.ч. ртутно-графитовые, состоящие из мельчайших капелек ртути, электролитически выделенных на подложку из специально обработанного графита.

Для фазового и элементного анализа твердых тел используют инверсионную В. с электроактивными угольными электродами (т. наз. минерально-угольными пастовыми электродами). Их готовят из смеси угольного порошка, исследуемого порошкообразного в-ва и инертного связующего, напр. вазелинового масла. Разработан вариант этого метода, к-рый дает возможность проводить анализ и определять толщину металлич. покрытий. В этом случае используют спец. устройство (прижимная ячейка), позволяющее регистрировать вольтамперограмму, пользуясь каплей фонового электролита, нанесенного на исследуемую пов-сть.

В. применяют: для количеств. анализа неорг. и орг. в-в в очень широком интервале содержаний - от 10-10 % до десятков %; для исследования кинетики и механизма электродных процессов, включая стадию переноса электрона, предшествующие и последующие хим. р-ции, адсорбцию исходных продуктов и продуктов электрохим. р-ций и т. п.; для изучения строения двойного электрич. слоя, равновесия комплексообразования в р-ре, образования и диссоциации интерметаллич. соединений в ртути и на пов-сти твердых электродов; для выбора условий ампераметрического титрования и др.

Лит.: Гейровский Я., КутаЯ., Основы полярографии, пер. с чеш., М., 1965; Га л юс 3., Теоретические основы электрохимического анализа, пер. с польск., М., 1974; Каплан Б. Я., Импульсная полярография, М., 1978; Брайнина X. 3., Нейман Е. Я., Твердофазные реакции в электроаналитической химии, М., 1982; Каплан Б. Я., Пац Р. Г., Салихджанова Р. М.-Ф., Вольтамперометрия переменного тока, М., 1985. Б. Я. Каплан, О. А. Сангина.